The correct answer is D
It is found as follows:
Put Price = Xe-.rt * [1 - N(d2)] – S * [1 - N(d1)]
Where d1=(ln(90/90)+(.05+.04/2)1)/.2√1)=.35 and using the Normal Z table, 1-N(.35)=1-.6368=.3632.
d2=.35-.2√1=.15, and using the Normal Z table, 1-N(.15)=1-.5596=.4404.
So the put value = 90e(-.05*1)(.4404) - 90(.3632)=$5.01 |