§8.5 重复测量的方差分析
重复测量的方差分析指的是一个应变量被重复测量好几次,从而同一个个体的几次观察结果间存在相关,这样就不满足普通分析的要求,需要用重复测量的方差分析模型来解决。
8.5.1 Repeated measures对话框界面说明
实际上,如果对普通方差分析模型作出正确的设置,两者的分析结果是完全相同的,即都正确,那么,重复测量的方差分析过程有何优势呢?我们通过下面的例子来看看:
例8.3 在数据集anxity2.sav中判断:anxiety和tension对实验结果(即trial1~trial4)有无影响;四次试验间有无差异;试验次数和两个变量有无交互作用。
anxity2.sav和anxity.sav实际上是同一个数据,但根据不同的分析目的采用了不同的数据排列方式。如果采用anxity.sav进行分析,我们可以分析四次试验间有无差异的问题,但对另两个问题就无能为力了,因为用普通的方差分析模型,anxity和tension的影响被合并到了subject中,根本就无法分解出来进行分析,这时,我们就只能求助于重复测量的方差分析模型。
在菜单中选择Analyze==>General Lineal model==>Repeated measures,系统首先会弹出一个重复测量因子定义对话框如下:
因为是重复测量的模型,应变量被重复测量了几次,分别存放在几个变量中,所以我们这里要自行定义应变量。默认的名称为factor1,我们将其改为trail,下面的因素等级数填入4(因一共测量了四次)。单击Add钮,则该变量被加入,我们就完成了模型设置的第一步:应变量名称和测量次数定义。单击define,我们开始进行下一个步骤:具体重复测量变量定义及模型设置,对话框如下:
这个对话框和我们以前看到的方差分析对话框不太一样:它没有应变量框,而是改为了组内效应框,实际上是一回事,上面我们定义了trial有四次测量,此处就给出了四个空让你填入相应代表四次测量的变量,选中trial1~trial4,将其选入;然后要选择自变量了(这里又将其称为了between subjects factor),将剩下的三个都选入即可。最后,根据题意,不需要检验anxity与tension的交互作用对试验次数有无交互作用,所以要在model中作相应设置,把那个东东拉出来。
详细的操作步骤如下:
- Analyze==>General Lineal model==>Repeated measures
- Within-subject factor name框:键选入trial
- number of levels框:键入4
-
单击ADD钮
-
单击DEFINE钮
-
Within-subject variables (trial)框:选入trial1~trial4
-
between subjects factor框:选入subject、anxity和tension
-
单击MODEL钮
-
Custom单选钮:选中
-
Within-subject Model框:选入trial
-
between subjects Model框:选入anxity和tension
-
单击CONTINUE
-
单击OK
请注意,这里没有选入变量subject,因为它实际上在这里成为了一个记录ID,要是将它选入,则什么都检验不了了。 |