Board logo

标题: [2008] Topic 11: Value at Risk 相关习题 [打印本页]

作者: aianjie    时间: 2009-6-27 13:16     标题: [2008] Topic 11: Value at Risk 相关习题

 

AIM 1: Distinguish Between Monte Carlo simulation and bootstrapping.

1、The Monte Carlo estimation of VAR:

A) is based on a normal distribution.

B) uses historical data.

C) is based on actual asset price data.

D) is also known as the delta-normal method.


作者: aianjie    时间: 2009-6-27 13:17

 

The correct answer is A

Monte Carlo simulation involves the creation of a distribution of pricing paths given randomly generated data. It is accomplished by taking samples from a normal distribution to create distributions of potential future outcomes. For every future outcome (or scenario), a portfolio value can be generated and a corresponding value at risk measure can be estimated.



作者: aianjie    时间: 2009-6-27 13:17

 

2、The bootstrapping technique of VAR:

A) is based on a normal distribution.

B) uses historical data.

C) requires lenghty computation time.

D) creates pricing paths.


作者: aianjie    时间: 2009-6-27 13:17

 

The correct answer is B

Bootstrapping estimation, on the other hand, utilizes historical data to estimate future outcomes. Both methods use one of two procedures: (1) a single-step procedure and long-term data; this procedure is used when the data has the same time scale as the time horizon of interest, or (2) a multi-step procedure and short-term data to create longer term periods.



作者: aianjie    时间: 2009-6-27 13:17

 

3、Which of the following statement about bootstrapping is TRUE?

A) Bootstrapping requires the time scale of the data to be equal to the time scale of interest.

B) Bootstrapping is one method for estimating VaR.

C) Bootstrapping requires a distributional assumption about the data.

D) Bootstrapping uses simulated data to estimate future outcomes.


作者: aianjie    时间: 2009-6-27 13:18

 

The correct answer is B

No distributional assumptions are needed to implement bootstrapping. Bootstrapping attempts to use historical data to estimate the future.



作者: aianjie    时间: 2009-6-27 13:18

 

AIM 2: Describe the implementation of Monte Carlo simulation for VAR calculations.

VaR is a commonly used risk metric. Typically VaR is estimated via a Monte Carlo simulation or via a bootstrapping method. Implementation of the Monte Carlo simulation for VaR includes all of the following EXCEPT:

I.           first a distribution is selected from common statistical methods.

II.         samples are made from a Normal distribution and used to build a distribution of future events.

III.        hyperparameters are then inserted into the estimation model.

IV.      for each event a pricing model is used to determine asset/portfolio values and then approximate VaR.

A) II and IV only.

B) I only.

C) I, II, III, and IV.

D) I and III only.


作者: aianjie    时间: 2009-6-27 13:18

 

The correct answer is D

Statement I is incorrect. Random numbers are generated. Statement III is incorrect. Models need not be hierarchical in nature.



作者: aianjie    时间: 2009-6-27 13:18

 

AIM 3: Identify the distribution of maxima and minima.

1、Which of the following statements about extreme value theory (EVT) is FALSE?

A) EVT can be used to model everyday occurrences. 

B) Cluster analysis is appropriate for financial data with time dependency. 

C) POT models determine the cut-off between typical and extreme values. 

D) EVT focuses on data that is generally considered outliers.


作者: aianjie    时间: 2009-6-27 13:19

 

The correct answer is A

EVT models are appropriate for low probability, high impact events; not everyday occurrences.



作者: aianjie    时间: 2009-6-27 13:19

 

2、Extreme value theory can assist with VAR calculations by providing better probability estimates of extreme losses than those indicated by a standard normal distribution. Using the generalized Pareto distribution (GPD), the parameter that indicates the fatness of tails is the:

A) threshold level, μ.

B) scaling parameter, b.

C) slope coefficient, b.

D) shape parameter, ξ.


作者: aianjie    时间: 2009-6-27 13:19

 

The correct answer is D

A positive shape parameter, ξ, indicates fat tails.



作者: aianjie    时间: 2009-6-27 13:19

 

3、The generalized extreme value (GEV) distribution is useful for: I. estimating VAR. II. stress testing. III. estimating correlation. IV. backtesting.

A) I, II, III, and IV.

B) I and III only. 

C) I only. 

D) II only. 


作者: aianjie    时间: 2009-6-27 13:19

 

The correct answer is D

The GEV distribution describes the distribution of the maximums from a large sample of identically distributed observations. It’s not particularly useful for VAR estimation since VAR does not consider the distribution of the maximum, but it is useful for stress testing. GEV also has nothing to do with correlations and would not be used for backtesting to see if a VAR model was effective.



作者: aianjie    时间: 2009-6-27 13:20

 

4、Extreme value theory (EVT) can assist with value at risk (VAR) calculations by providing better probability estimates of observing extreme losses than that indicated by a standard normal distribution because empirical distributions exhibit fat tails. If one uses the generalized Pareto distribution (GPD) method to generate parameter estimates for the shape parameter, fat tails will indicate a:

A) positive parameter estimate and VAR calculations that are too small.

B) positive parameter estimate and VAR calculations that are too large.

C) negative parameter estimate and VAR calculations that are too small.

D) negative parameter estimate and VAR calculations that are too large.


作者: aianjie    时间: 2009-6-27 13:20

 

The correct answer is A

Fat tails will generate a positive shape parameter, which indicates that VAR estimates are probably too small.



作者: aianjie    时间: 2009-6-27 13:20

 

5、Block maxima disaggregates the data into:

A) equal sized, independent subsamples. 

B) unequal sized, independent subsamples. 

C) unequal sized, dependent subsamples. 

D) equal sized, dependent subsamples. 


作者: aianjie    时间: 2009-6-27 13:21

 

The correct answer is A

The block maxima approach determines the maxima for mutually exclusive, equal sized, independently distributed subsamples of data.



作者: aianjie    时间: 2009-6-27 13:21

 

6、Which of the following statements is TRUE?

A) The semi-parametric peaks-over-threshold utilizes the generalized Pareto distribution. 

B) Block maxima are a semi-parametric peaks-over-threshold model. 

C) Tail events are more likely under the generalized Pareto distribution relative to a normal distribution. 

D) The generalized Pareto distribution provides a non-linear estimate of the tail. 


作者: aianjie    时间: 2009-6-27 13:21

 

The correct answer is C

Generalized Pareto distribution generates a linear approximation to the tail distribution. Block maxima and peaks-over-threshold are two general classes of extreme value modeling. The generalized Pareto distribution is a parametric approach.



作者: aianjie    时间: 2009-6-27 13:23

 

7、All of the following are extreme value theory models EXCEPT:

A) block Maxima. 

B) semi-parametric peaks-over-threshold. 

C) generalized Pareto distribution. 

D) stressed VAR. 


作者: aianjie    时间: 2009-6-27 13:23

 

The correct answer is D

Stressed VAR is not an EVT model.

 


作者: aianjie    时间: 2009-6-27 13:24

 

8、Under the Extreme Value Theorem (EVT), which of the following is (are) TRUE regarding the modeling of market risk?

I.           The three key resulting distributions are: Gumbel, Weibull, and Frechet.

II.         EVT permits the analysis of maxima and minima distributions.

III.        EVT is does not account for “heavy” tails observed in the market place.

IV.      EVT is dependent upon the normal distribution.

A) I and III only.

B) I only.

C) None of these.

D) I and II only.


作者: aianjie    时间: 2009-6-27 13:24

 

8、Under the Extreme Value Theorem (EVT), which of the following is (are) TRUE regarding the modeling of market risk?

I.           The three key resulting distributions are: Gumbel, Weibull, and Frechet.

II.         EVT permits the analysis of maxima and minima distributions.

III.        EVT is does not account for “heavy” tails observed in the market place.

IV.      EVT is dependent upon the normal distribution.

A) I and III only.

B) I only.

C) None of these.

D) I and II only.


作者: aianjie    时间: 2009-6-27 13:24

 

The correct answer is D

Statement III is incorrect because EVT allows for “heavy” tails as we see in the market place. Statement IV is incorrect because EVT is not dependent upon the normal distribution.

 


作者: aianjie    时间: 2009-6-27 13:24

 

9、Which of the following statements is (are) FALSE concerning extreme value distributions?

Using block maxima, local maxima may not resemble extreme observations.

Small tails reduce the variance of the estimator in cluster analysis.

The two classes of EVT models are block maxima and generalized extreme value distribution.

A) I and II only.

B) I and III only.

C) I, II, and III.

D) II and III only.


作者: aianjie    时间: 2009-6-27 13:25

 

The correct answer is D

Small tails decrease the number of extreme observations increasing the variance. Block maxima and peaks-over-threshold are the two classes of EVT distributions.

 


作者: aianjie    时间: 2009-6-27 13:25

 

10、Extreme value theory (EVT) can assist with value-at-risk (VAR) calculations by providing better probability estimates of observing extreme losses than that indicated by a standard normal distribution because:

A) the observed empirical distribution of most asset returns tends to be platykurtic.

B) extreme losses appear to occur less frequently than indicated by a normal distribution.

C) extreme losses appear to occur more frequently than indicated by a normal distribution.

D) EVT is the most efficient method for estimating extreme losses.


作者: aianjie    时间: 2009-6-27 13:25

 

The correct answer is C

Extreme losses appear to occur with a higher frequency than indicated by a normal distribution. EVT has been shown to generate more realistic probability estimates for extreme losses than a normal distribution.

 


作者: aianjie    时间: 2009-6-27 13:25

 

11、Under the Extreme Value Theorem (EVT), which of the following is (are) TRUE regarding the modeling of market risk?

I.           The three key resulting distributions are: Lognormal, Weibull, and Pareto.

II.         EVT permits the analysis of maxima distributions.

III.        EVT does nto account for "heavy" tails observed in the market place.

IV.      EVT is dependent upon the normal distribution.

A) I and IV only.

B) None of these.

C) I and II only.

D) I and III only.


作者: aianjie    时间: 2009-6-27 13:26

 

The correct answer is B

Gumbel, Weibull, and Frechet are common results. EVT allows for analysis of maxima and minima. EVT allows for “heavy” tails as we see in the market place. EVT is not dependent upon the normal distribution.

 


作者: aianjie    时间: 2009-6-27 13:26

 

AIM 4: Calculate the peaks over threshold.

1、The Peaks Over Threshold (POT) approach serves as a basis for an expanded model of risk estimation. Which of the following statements are false regarding POT?

I. Under the POT method, in the case of “fat” tails, not all moments are defined.

II. POT is often estimated with a Generalized Pareto Distribution.

A) Both I and II.

B) Neither I nor II.

C) I only.

D) II only.


作者: aianjie    时间: 2009-6-27 13:26

 

The correct answer is B

Both statements are correct (i.e., neither are false).



作者: aianjie    时间: 2009-6-27 13:26

 

2、Which of the following is TRUE comparing VAR and extreme value theory (EVT)?

A) VAR and EVT assume normality of the return distribution.

B) Only EVT considers losses beyond a specified threshold.

C) The generalized Pareto distribution is fully parameterized by the mean and variance.

D) EVT focuses exclusively on the upper half of the return distribution.


作者: aianjie    时间: 2009-6-27 13:28

 

The correct answer is B

The principal shortcoming of VAR is that it does not consider losses beyond a specified threshold.



作者: aianjie    时间: 2009-6-27 13:28

 

AIM 5: Discuss the coherence property of risk measures.

1、Which of the following are properties of a Coherent risk metric?

A) Positive homogeneous.

B) All of these.

C) Monotonicity.

D) Sub-additivity.


作者: aianjie    时间: 2009-6-27 13:29

 

The correct answer is B

All of these are properties of a Coherent risk metric.



作者: aianjie    时间: 2009-6-27 13:29

 

2、Which of the following is a property of a coherent risk metric?

A) Sub-Additive.

B) Sub-Monotonic.

C) Positive Heterogeneous.

D) All of these.


作者: aianjie    时间: 2009-6-27 13:29

 

The correct answer is A

Only Sub-Additive is a coherent risk metric.



作者: maliya    时间: 2009-7-25 16:35

进来看看
作者: sarui    时间: 2009-7-30 16:57

[em55]
作者: FREDDYRHZHENG    时间: 2009-8-3 12:11

So good sample questions!
作者: shanshan_146    时间: 2009-10-30 08:52

辛苦了!


作者: biyadi    时间: 2009-10-30 12:57

谢谢哦


作者: loveluxiaomei    时间: 2009-10-30 21:44

谢谢啦


作者: serenevein    时间: 2010-5-20 00:54

 感謝樓主辛苦整理題目
作者: ozqmnfqt    时间: 2011-12-16 07:01

这个贴子要顶~~~~~~~~~~~~~~
作者: vknk0977    时间: 2011-12-17 09:23

北京最专业的特大幅面全开菲林输出公司 最大全开菲林输出尺寸1.50米X3.00米 联系人:张鹏 手机:15801015815 本全开菲林输出公司位于北京市国贸CBD商业区,拥有可输出幅面1.50米X3.00米胶片 的激光照排机两台、扫描精度可高达2400-3600DPI。 重复对位精度可达±10UM。客户遍布北京、河北、浙江、上海、江苏、广东、山东、 福建等全国各地。 我们的服务优势:

        1、硬件设施好:我司采用瑞士先进电子技术,菲林输出网点圆实,平网均匀,渐变平滑, 输出效果可与网屏5055相媲美,输出幅面特大。

        2、技术积累深:公司技术员从业长达四年,在特大幅面输出上有着深厚功底,能处理QUARK EXPRESS 等国内广告业十分陌生的软件。 在胶印上,由于我们成功的解决了大包装用小菲林拼接有线条、尺寸有一定的误差的难题,省却 了手工拼接菲林这样费时易出错的工作,也省却了给最终客户就线条问题解释半天的麻烦事情, 保持最终用于晒版的菲林非常干净,将使贵公司的印刷质量和效率进一步提高,从而大大加强贵 公司在业界的竞争力。我们能根据包装印刷的特点,熟练把握专色、四色等印刷要求,特别是一 些重要部位如叠印、镂空、压印等处理,通过与贵公司设计师沟通,确保优质菲林的输出。 在丝印上,传统彩色丝网印刷的分色网版制作,尤其是遇到超大型网印时,无非是采用手工菲林 拼版,放大菲林或投晒网版。手工拼接菲林,难以保证不露拼接痕迹,并且尺寸有一定误差,并 且易出差错。放大菲林及投晒网版,由于受像距、镜头球面等客观因素的制约,易造成网点大小 不匀,边缘网点不全等,使网版质量难以控制,给丝网印刷造成很多麻烦。我们通过大量试验, 不仅给丝印公司解决了拼版有细线,放大时候网点大小不匀等问题,省却了计算像距、手工刮网 点的麻烦事情,而且还通过多次与丝印公司沟通,成功地在菲林输出之前就解决了丝印龟纹现象, 将使贵公司的印刷质量和效率进一步提高。

        3、公司自备发电机,电力紧张时也能正常工作,从而保证生产运行;24小时不间断营业, 每个班次都配专业出片师、检查人员,确保胶片质量。

        联系人:张鹏 手机:15801015815




欢迎光临 FRM论坛 (http://bbs.frmspace.com/) Powered by Discuz! 7.2