Board logo

标题: 请问如何用ssps实现以下过程的? [打印本页]

作者: soso60118    时间: 2006-5-7 11:56     标题: 请问如何用ssps实现以下过程的?

年份

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

单品价格单位(元/台)

11000

8600

6900

5400

4200

3300

2900

2300

1915

1250

Dependent variable.. 价格 Method.. INVERSE

Listwise Deletion of Missing Data

Multiple R .93591

R Square .87593

Adjusted R Square .85821

Standard Error 1169.89516

Analysis of Variance:

DF Sum of Squares Mean Square

Regression 1 67641617.2 67641617.2

Residuals 7 9580582.8 1368654.7

F = 49.42197 Signif F = .0002

-------------------- Variables in the Equation --------------------

Variable B SE B Beta T Sig T

Time 10196.953204 1450.475438 .935914 7.030 .0002

Constant) 1963.127011 599.952312 3.272 .0136

_

Dependent variable.. 价格 Method.. QUADRATI

Listwise Deletion of Missing Data

Multiple R .99876

R Square .99752

Adjusted R Square .99669

Standard Error 178.62801

Analysis of Variance:

DF Sum of Squares Mean Square

Regression 2 77030752.2 38515376.1

Residuals 6 191447.8 31908.0

F = 1207.07716 Signif F = .0000

-------------------- Variables in the Equation --------------------

Variable B SE B Beta T Sig T

Time -2470.168831 104.362486 -2.177365 -23.669 .0000

Time**2 138.116883 10.178275 1.248307 13.570 .0000

(Constant) 13145.476190 227.289497 57.836 .0000

_

Dependent variable.. 价格 Method.. CUBIC

Listwise Deletion of Missing Data

Multiple R .99973

R Square .99946

Adjusted R Square .99914

Standard Error 90.94033

Analysis of Variance:

DF Sum of Squares Mean Square

Regression 3 77180849.3 25726949.8

Residuals 5 41350.7 8270.1

F = 3110.82235 Signif F = .0000

-------------------- Variables in the Equation --------------------

Variable B SE B Beta T Sig T

Time -3118.660414 161.227177 -2.748987 -19.343 .0000

Time**2 292.031025 36.498134 2.639391 8.001 .0005

Time**3 -10.260943 2.408561 -.844259 -4.260 .0080

(Constant) 13822.698413 196.620555 70.301 .0000

MODEL: MOD_5.

_

Dependent variable.. 价格 Method.. COMPOUND

Listwise Deletion of Missing Data

Multiple R .99803

R Square .99606

Adjusted R Square .99549

Standard Error .04045

Analysis of Variance:

DF Sum of Squares Mean Square

Regression 1 2.8931719 2.8931719

Residuals 7 .0114512 .0016359

F = 1768.56886 Signif F = .0000

-------------------- Variables in the Equation --------------------

Variable B SE B Beta T Sig T

Time .802848 .004192 .368606 191.514 .0000

(Constant) 13205.129355 388.011272 34.033 .0000

_

Dependent variable.. 价格 Method.. EXPONENT

Listwise Deletion of Missing Data

Multiple R .99803

R Square .99606

Adjusted R Square .99549

Standard Error .04045

Analysis of Variance:

DF Sum of Squares Mean Square

Regression 1 2.8931719 2.8931719

Residuals 7 .0114512 .0016359

F = 1768.56886 Signif F = .0000

-------------------- Variables in the Equation --------------------

Variable B SE B Beta T Sig T

Time -.219589 .005222 -.998027 -42.054 .0000

(Constant) 13205.129355 388.011272 34.033 .0000

_

Dependent variable.. 价格 Method.. LGSTIC

Listwise Deletion of Missing Data

Multiple R .99803

R Square .99606

Adjusted R Square .99549

Standard Error .04045

Analysis of Variance:

DF Sum of Squares Mean Square

Regression 1 2.8931719 2.8931719

Residuals 7 .0114512 .0016359

F = 1768.56886 Signif F = .0000

-------------------- Variables in the Equation --------------------

Variable B SE B Beta T Sig T

Time 1.245565 .006504 2.712924 191.514 .0000

(Constant) 7.5728148745E-05 2.2251E-06 34.033 .0000

MODEL: MOD_6.

_

Dependent variable.. 价格 Method.. POWER

Listwise Deletion of Missing Data

Multiple R .96595

R Square .93305

Adjusted R Square .92349

Standard Error .16667

Analysis of Variance:

DF Sum of Squares Mean Square

Regression 1 2.7101609 2.7101609

Residuals 7 .1944622 .0277803

F = 97.55688 Signif F = .0000

-------------------- Variables in the Equation --------------------

Variable B SE B Beta T Sig T

Time -.809218 .081929 -.965946 -9.877 .0000

(Constant) 13925.335289 1797.809098 7.746 .0001

_

Dependent variable.. 价格 Method.. GROWTH

Listwise Deletion of Missing Data

Multiple R .99803

R Square .99606

Adjusted R Square .99549

Standard Error .04045

Analysis of Variance:

DF Sum of Squares Mean Square

Regression 1 2.8931719 2.8931719

Residuals 7 .0114512 .0016359

F = 1768.56886 Signif F = .0000

-------------------- Variables in the Equation --------------------

Variable B SE B Beta T Sig T

Time -.219589 .005222 -.998027 -42.054 .0000

(Constant) 9.488361 .029383 322.916 .0000

通过各个模型的方差分析表和各回归分析系数的检验结果,我们发现二次曲线,三次曲线,复合函数,指数函数,逻辑函数,幂函数,增长函数的拟合优度都很高(0.99以上),并且通过了方程显著性检验和系数显著性检验。






欢迎光临 FRM论坛 (http://bbs.frmspace.com/) Powered by Discuz! 7.2